If it's not what You are looking for type in the equation solver your own equation and let us solve it.
X^2+50X-10000=0
a = 1; b = 50; c = -10000;
Δ = b2-4ac
Δ = 502-4·1·(-10000)
Δ = 42500
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$X_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$X_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{42500}=\sqrt{2500*17}=\sqrt{2500}*\sqrt{17}=50\sqrt{17}$$X_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(50)-50\sqrt{17}}{2*1}=\frac{-50-50\sqrt{17}}{2} $$X_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(50)+50\sqrt{17}}{2*1}=\frac{-50+50\sqrt{17}}{2} $
| 8×(h+6)h=5 | | 7=24÷x+6 | | Y=24÷x+6 | | (-50x)+600=250 | | -4(x7)=36 | | 3(5x–4)–5(5+2x)–2x=x–6(5+x) | | 4j−5=7 | | 6(5-7y)=3(3+7y) | | 0.2(g-8)=0.6(g-16) | | 3r+22=88r | | 16–5x=3x–8 | | 0.2(g-8)=0.6(g-8) | | 2+1/2y-34=12 | | x+3/18=2/3 | | C=5n+5 | | x-9=7x+14 | | (D2+2D+4)y=0 | | 2(x-7)^(5)+3=67 | | 24=x+35 | | (2x+1)(x-3)=-4 | | (7x)x5=140 | | 0.5(x-2)=7.75-3x | | 0.5(x-2)=7.75 | | 19x-10=9x+7.50 | | 4x+8=54* | | 42x−17(4x)+16=0 | | 12x10=14x+22x-2 | | 7+5=(3x+2) | | 3.5+x=7.8 | | 5(x-1)=2-(x-10) | | A=5/6x2/9 | | x=900+0.25x/2 |